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We present an alternative formulation of Equilibrium Statistical Mechanics
which follows the method based on the maximum statistical entropy principle in
Information Theory combined with the use of Massieu–Planck functions. The
different statistical ensembles are obtained by a suitable restriction of the whole
set of available microstates. The main advantage is that all of the equations that
relate the average values with derivatives of the partition function are formally
identical in the different ensembles. Moreover, Einstein’s fluctuation formula is
also derived within the same framework. This provides a suitable starting point
for the calculation of fluctuations of extensive and intensive variables in any
statistical ensemble.
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1. INTRODUCTION

The central equation in Equilibrium Statistical Mechanics identifies the
thermodynamic entropy S with the maximum value S of the statistical
entropy functional Ŝ({pi}) through the Boltzmann constant k:

S
k
=S. (1)

This formulation, proposed by Jaynes, (1) is based on the so-called Maximum
Statistical Entropy Principle within the context of Information Theory. (2, 3)

The thermodynamic entropy S is a quantity defined for equilibrium (macro)
states of a system. On the other hand, the statistical entropy functional



Ŝ({pi}) characterizes the uncertainty associated with any mathematically
well-defined (0 [ pi [ 1 and ; i ¥ W pi=1) probability distribution {pi} on
the set of available microstates W={i}.

The functional Ŝ({pi}) is required to satisfy the two following general
properties: (i) Ŝ must be positive, taking the value zero only in the case of
absolute certainty (pi=0 for all the states, except for a given state j for
which pj=1); (ii) Ŝ must increase monotonically with increasing uncer-
tainty. In addition, if we require the condition that (iii) Ŝ is additive for
independent sources of uncertainty, then it can be demonstrated (4) that the
functional Ŝ has the following form:

Ŝ({pi})=−C
i ¥ W

pi ln pi. (2)

A direct consequence of the latter requirement (iii) is the property of extensi-
vity, which can be formulated as follows; let us consider a system composed
of two independent subsystems A and B so that the set of microstates is
WA+B=WA ×WB. Each microstate (i, j) can be specified by fixing a state
i ¥ WA of the subsystem A and a state j ¥ WB of the subsystem B. If a proba-
bility density pA+B

(i, j) satisfies pA+B
(i, j) =pA

i p
B
j then ŜA+B=ŜA+ŜB.

Let us consider an isolated hydrostatic pure substance. The available
microstates (WE, V, N) are those with a fixed energy E, volume V and number
of particles N. It is easy to show that the maximum entropy S is obtained
when all the microstates have equal probability pi=

1
W , where W is the

number of microstates in WE, V, N. Therefore, in this case, Eq. (1) reduces to
the well-known equation proposed by Boltzmann in 1877: (5)

S(E, V, N)=k ln W. (3)

This is the basic equation of the so-called Microcanonical Ensemble. Other
statistical ensembles are introduced by relaxing constraints regarding the
interaction of the system with the surroundings, which increases the set of
compatible microstates. For instance, in the Canonical Ensemble the
system is allowed to exchange energy with a reservoir, provided that its
mean energy U=; i ¥ WV, N

piEi is fixed (Ei are the eigenvalues of the system
Hamiltonian). The available microstates are those with fixed V and N, thus
WV, N ‡ WE, V, N. (6) In the derivation of the corresponding basic equation, the
temperature T appears naturally as a parameter controlling the mean energy.
The resulting equation relates the Helmholtz Free Energy F=U−TS with
the logarithm of the partition function QC: (7, 8)

F(T, V, N)=−kT ln QC (4)
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with:

QC= C
i ¥ WV, N

e−
Ei
kT. (5)

In a similar way one can derive the Grand Canonical Ensemble by allowing
the exchange of energy and particles by fixing the mean energy and mean
number of particles. In such ensembles the thermodynamic variables
determining the macrostate of the system are usually taken as natural
variables of an energetic potential. This is in contrast to the Microcanoni-
cal Ensemble, where entropy is taken as the relevant potential. Conse-
quently, the corresponding basic equations of such ensembles are formally
different, as can be seen by comparing Eqs. (3) and (4). Therefore, all the
equations derived for the average values and fluctuations of different
microscopic quantities are also formally different.

The aim of the present paper is to show that if the different statistical
ensembles are constructed by choosing appropriate variables, the thermo-
dynamic-statistical connection can be established using an entropic potential
through a basic equation formally identical to Eq. (3) for all the different
ensembles. As will be shown, the relevant thermodynamic potentials in this
case are Massieu–Planck functions (9) obtained by means of Legendre trans-
formations of the entropy. Actually, the interest in Massieu–Planck functions
in Statistical Mechanics has already been mentioned in Callen’s book. (10)

However, standard formulations of Statistical Physics (3, 7, 8, 11–13) do not
make use of them at all. Exceptions are found in Balian’s and Münster’s
books, (3, 14) where the formal treatment of Generalized Ensembles is based
on Massieu–Planck functions, with viewpoints that share a number of
similarities with the formulation presented here. The proposed systematics
turn out to be especially adequate for calculations in ensembles such as the
Grand Canonical or the Isobaric–Isothermal Ensembles, since the identifi-
cation of proper pairs of entropic conjugate variables considerably simpli-
fies the expressions that determine average values and fluctuations.

Although there is nothing essential in the proposed development, its
interest lies in rationalizing the formulation of Ensemble Theory by provid-
ing compact expressions for the different thermodynamic quantities which
take exactly the same form in all statistical ensembles. The paper is organized
as follows: in Section 2 Massieu–Planck functions are introduced. In Sec-
tion 3 the Ensemble Theory is formulated by making use of the previously
introduced natural thermodynamic variables for Massieu–Planck functions.
In Section 4 Einstein’s formula for the probability of fluctuations is derived
within the context of the Information Theory. Finally, in Section 5 such a
formula is applied to the study of the fluctuations of intensive and extensive
variables in the different equilibrium statistical ensembles.
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2. THERMODYNAMICS: ENTROPIC VARIABLES AND

MASSIEU–PLANCK FUNCTIONS

For the sake of clarity, we consider a simple pure substance under
hydrostatic conditions described by the following fundamental equation:

dS=
1
T
dU+

p
T
dV−

m

T
dN, (6)

where the extensive variables U, V, and N are the internal energy, the
volume, and the number of particles, respectively, and the intensive
variables T, p, and m are the temperature, the pressure and the chemical
potential.

Equation (6) corresponds to the choice of the variables U, V, and N as
independent variables of the entropy S(U, V, N). These variables are pre-
cisely those which are fixed and determine the macrostate of the members
of the Microcanonical Ensemble and consequently S is the relevant poten-
tial in this statistical ensemble.

It is useful to define the following quantities: b — 1/kT, p — p/kT and
n — −m/kT so that Eq. (6) can then be written in the dimensionless form:

dS=b dU+p dV+n dN. (7)

In general, for other thermodynamic systems with N degrees of freedom,
we have:

dS=C
N

k=1
yk dXk, (8)

where Xk are extensive variables, and yk are the corresponding entropic
conjugate variables. Massieu–Planck functions (9) are entropic thermody-
namic potentials defined as Legendre transformations of the entropy. In
the case of a pure substance, the following (dimensionless) potentials can
be formally defined:

F(b, V, N) —S−bU, (9)

L(U, p, N) —S−pV, (10)

C(U, V, n) —S− nN, (11)

X(b, p, N) —S−bU−pV, (12)
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U(U, p, n) —S−pV− nN, (13)

Y(b, V, n) —S−bU− nN, (14)

P(b, p, n) —S−bU−pV− nN. (15)

The function F was first introduced by Massieu, (15) and is called Massieu’s
potential. The function X was introduced by Planck (16) and is called
Planck’s potential. The extensivity of S implies the following scaling
property when the complete set of natural variables U, V, and N are re-
scaled by a factor l:

S(lU, lV, lN)=lS(U, V, N). (16)

Euler’s theorem for homogeneous functions enables the following equation
to be obtained:

S=bU+pV+nN, (17)

that is, the Legendre transformation of all the variables redefines the
entropy and, therefore P=0. Substituting Eq. (7) into the differentials of
the potentials defined above, we obtain:

dF=−U db+p dV+n dN (18)

dL=b dU−V dp+n dN (19)

dC=b dU+p dV−N dn (20)

dX=−U db−V dp+n dN (21)

dU=b dU−V dp−N dn (22)

dY=−U db+p dV−N dn, (23)

and from Eq. (17) one obtains:

U db+V dp+N dn=0. (24)

The above equations allow a re-derivation of all the standard thermodynamic
equations in terms of b, p, and n. For instance, Maxwell relations can be
easily deduced, by imposing that the Eqs. (18)–(23) are exact differentials
(equality of crossed derivatives). Moreover, Eq. (24) is the Gibbs–Duhem
equation which states that the complete set of intensive variables of the
system are not all independent. On the other hand, the extremal condition of
S allows us to deduce that b, p, and n are homogeneous at equilibrium. (17)
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3. GIBBS–BOLTZMANN STATISTICAL MECHANICS

3.1. Generalized Ensemble

In contrast to usual procedures, the statistical ensembles will be intro-
duced here by starting with the most generalized ensemble (a completely
open system) and later imposing the constraints that lead to the standard
ensembles. Thus, we begin by studying what we call the Generalized
Ensemble in which the system can exchange energy, volume and particles
with the surroundings, but keeps the corresponding average values of E, V,
and N constant:

U — OEP=C
i ¥ W

piEi, (25)

OVP=C
i ¥ W

piVi, (26)

ONP=C
i ¥ W

piNi. (27)

Using the method of Lagrange multipliers we maximize the statistical
entropy functional subject to the constraints (25)–(27) and the normaliza-
tion condition of the probabilities pi. This gives:

“L

“pi
=0, (28)

where:

L({pi})=−C
i ¥ W

pi ln pi −l0 C
i ¥ W

pi −l1 C
i ¥ W

Ei pi −l2 C
i ¥ W

Vi pi −l3 C
i ¥ W

Ni pi.
(29)

Note that, in this ensemble, W corresponds to the set of microstates with any
value for energy Ei, volume Vi and number of particles Ni. The following is
obtained:

pi=
e−(l1Ei+l2Vi+l3Ni)

; i ¥ W e−(l1Ei+l2Vi+l3Ni)
. (30)

The value of the entropy at the maximum is:

S=1 ln C
i ¥ W

e−(l1Ei+l2Vi+l3Ni)2+l1U+l2OVP+l3ONP. (31)
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Comparison of Eq. (31) with Eq. (17) allows identification of the Lagrange
parameters l1=b, l2=p and l3=n and the following expression to be
obtained:

C
i ¥ W

e−(bEi+pVi+nNi)=1. (32)

Thus, from (30), the probabilities of the microstates in the Generalized
Ensemble are:

pi=e−(bEi+pVi+nNi), -i ¥ W. (33)

Note that these pi already satisfy the normalization condition (32). This is a
consequence of the Gibbs–Duhem equation (24). (18)

In the following subsections we develop different restricted statistical
ensembles and consider a number of examples.

3.2. Microcanonical Ensemble

In the Microcanonical Ensemble the energy E, volume V and number of
particles N are fixed. We consider the subset WE, V, N …W (-i ¥WE, V, N, Ei=E,
Vi=V, andNi=N). By imposing this condition on Eq. (33), we obtain:

pi=e−(bE+pV+nN), (34)

which is independent of the state of the system. From the normalization
condition (32) we obtain:

QMe−(bE+pV+nN)=1, (35)

where QM is the Microcanonical partition function or number of available
microstates (we have denoted it by W in the Introduction). Taking into
account (17), we recover the characteristic equation of the Microcanonical
Ensemble:

S(E, V, N)=ln QM. (36)

3.3. Canonical Ensemble

In this case the volume and the number of particles are fixed, while the
energy, which is controlled by the temperature of a reservoir in thermal
contact with the system, can fluctuate. Therefore, from (32):

e−(pV+nN) C
i ¥ WV, N

e−bEi=1. (37)
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From (9) and (17), it is seen that:

F=pV+nN (38)

and thus:

F(b, V, N)=ln QC (39)

where:

QC= C
i ¥ WV, N

e−bEi (40)

is the Canonical partition function.

3.4. Grand Canonical Ensemble

The situation is similar, however now, in comparison with the Canon-
ical case, the number of particles can also fluctuate, controlled by the
chemical potential of the reservoir. Following the same procedure as
before, we obtain:

Y(b, V, n)=ln QGC (41)

where the Grand Canonical partition function QGC is given by:

QGC= C
i ¥ WV

e−(bEi+nNi). (42)

3.5. Other Statistical Ensembles

Let us now consider a generic system with N degrees of freedom and
the ensemble of microstates for which n (n [N) extensive variables have
been fixed WX1,..., Xk,..., Xn

. Taking into account the preceding examples it is
clear that, within the entropic formulation, the characteristic equation
takes the general form:

k(X1,..., Xn, yn+1,..., yN)=ln Q, (43)

where k(X1,..., Xn, yn+1,..., yN) is the corresponding Massieu–Planck
function obtained after a Legendre transformation of the entropy with
respect to the variables Xn+1,..., XN (k=S−;N

k=n+1 ykXk) and Q is the
partition function of this generic ensemble.
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We shall develop the corresponding formulas for the averages and
fluctuations of extensive variables for this ensemble. The averages of the
fluctuating extensive variables are obtained from:

OXkP=−
“ ln Q

“yk
, k=n+1,...,N, (44)

whereas the intensive variables conjugated from the fixed extensive
variables satisfy:

yk=
“ ln Q

“Xk
, k=1,..., n. (45)

It is worth noting that these latter derivatives can be expressed in terms of
average values of microscopic generalized forces “Xk

“Xl
with k=n+1,...,N

and l=1,..., n. (14) For instance, for a pure substance under hydrostatic
conditions, the microscopic quantity related to p is b “Ei

“V , and the micro-
scopic quantity related to n is b “Ei

“N .
The covariance matrix of the extensive fluctuating variables is easily

obtained as:

ODXk DXlP=
“

2 ln Q

“yk “yl
, -k, l=n+1,...,N. (46)

where we have defined DXk=Xk −OXkP. The diagonal elements correspond
to the variances (commonly called fluctuations) of the extensive variables:

ODX2
kP=

“
2 ln Q

“y2
k

=−
“OXkP

“yk
, -k=n+1,...,N. (47)

The latter terms in these equalities are response functions. Therefore, these
Eqs. (47) correspond to the (static) fluctuation-dissipation relations.

In the next three sections examples of the application of the above
formalism to specific ensembles are presented.

3.6. Example 1: Grand Canonical Fluctuations

As a first example, we consider the calculation of the fluctuations in
the Grand Canonical ensemble. In order to illustrate the advantages of the
proposed formalism, we first carry out the calculation within the standard
Statistical Mechanics framework.
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For an hydrostatic pure substance T, V, and m are selected as inde-
pendent variables so that the corresponding energetic potential is G=−pV
and the basic equation reads: (7)

G(T, V, m) — −pV=−kT ln QGC (48)

with

QGC(T, V, m)=C
WV

e−Ei/kT+mNi/kT. (49)

In terms of T, V, and m, the expressions giving the average number of par-
ticles and energy are:

ONP=−1“G
“m
2
V, T

(50)

and

U — OEP=−m 1“G
“m
2
T, V

−T 1“G
“T
2
m, V

+G. (51)

The fluctuations of these quantities are:

ODE2P=−kT3 1“2G
“T2
2
m, V

−kTm2 1“2G
“m2
2
T, V

(52)

ODN2P=−kT 1“
2G

“m2
2
T, V

. (53)

Actually, the above formulas (50)–(53) are not usually written as shown
above in standard textbooks. Instead, different changes of variables are
proposed in order to simplify them. For instance, in the first edition of
Pathria’s book, (7) the fugacity z=em/kT is introduced. In the second edition,
different strategies (either using z or −m/kT) are adopted when developing
the thermodynamics of the ensemble. In our context the choice of the
variables is already clear. They directly follow from Eq. (41). Average
values of the energy and number of particles are computed, within this
framework, as

U — OEP=−1“Y
“b
2
V, n

, ONP=−1“Y
“n
2
b, V

(54)
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and fluctuations are simply given by:

ODE2P=1“
2Y

“b2
2
n, V

=−1“U
“b
2
n, V

(55)

ODN2P=1“
2Y

“n2
2
b, V

=−1“ONP

“n
2
b, V

. (56)

Moreover, the fluctuations of E and N, are not independent in the Grand
Canonical Ensemble. It is straightforward to compute their covariance:

ODE DNP=1 “
“n
1“Y
“b
2
V, n

2
b, V

=−1“U
“n
2
b, V

=−1“ONP

“b
2
n, V

. (57)

The latter equality corresponds to a Maxwell relation. It is interesting to
compare, within the present framework, the energy fluctuations in this
Grand Canonical ensemble with those in the Canonical ensemble whose
variance is given by:

ODE2PC=1
“

2F

“b2
2
N, V

=−1“U
“b
2
N, V

=kb2CV, (58)

where CV is the constant volume heat capacity. The relation between the
derivative (“U

“b)N, V and (“U
“b)n, V [appearing in Eq. (55)] is:

1“U
“b
2
n, V

=1“U
“b
2
N, V

+1 “U
“N
2
b, V

1“N
“b
2
n, V

=1“U
“b
2
N, V

+1“U
“n
2
b, V

1 “n
“N
2
b, V

1“N
“b
2
n, V

. (59)

Taking into account Eqs. (56) and (57) one easily obtains:

ODE2P=ODE2PC+
ODE DNP2

ODN2P
, (60)

where all the average values refer to the Grand Canonical Ensemble except
those indicated by O · · ·PC which correspond to Canonical averages. By
taking into account the definition of statistical correlation (r(N, E))
between two random variables, Eq. (60) can be transformed into:

ODE2PC=ODE2P(1−r(N, E)2). (61)
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3.7. Example 2: The Isothermal–Isobaric Ensemble

Another particular example of interest is that of a system with a fixed
number of particles, but that has energy and volume fluctuations.
Although this case corresponds to typical experimental situations, it is not
frequently studied. The connexion between thermodynamics and statistical
mechanics, in this case is established through:

X(b, p, N)=ln QIB (62)

with

QIB= C
i ¥ WN

e−(bEi+pVi). (63)

Following the same strategy as in the Grand Canonical ensemble we easily
obtain:

U — OEP=−1“X
“b
2
p, N

, OVP=−1“X
“p
2
b, N

(64)

and the energy and volume fluctuations are simply given by:

ODE2P=1“
2X

“b2
2
p, N

=−1“U
“b
2
p, N

, (65)

ODV2P=1“
2X

“p2
2
b, N

=−1“OVP
“p
2
b, N

, (66)

and their covariance is:

ODE DVP=1 “
“p
1“X
“b
2
N, p

2
b, N

=−1“U
“p
2
b, N

=−1“OVP
“b
2
p, N

. (67)

Energy fluctuations in this ensemble are related to canonical energy fluc-
tuations through the expression:

ODE2P=ODE2PC+
ODE DVP2

ODV2P
. (68)

3.8. Example 3: The Magnetic Solid

The magnetic solid is another interesting system that can be discussed
within the present formulation. As usual, let us consider that the magnetic
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moments mF are all identical, localized on a rigid lattice (ignoring pressure
effects), and that only their component along the external magnetic field HF
are relevant. The microstates i of the crystal are characterized by the energy
Ei, the total magnetization in the direction of the field Mi and the total
number of magnetic moments Ni. Note that in any state i:

Mi=C
Ni

k=1
mki, (69)

where the sum extends over all lattice sites and mki is the projection of mF k

along the field HF .
Some textbooks (see, for example, refs. 7 and 13) include a treatment

of such a system within the Canonical ensemble and obtain a ‘‘Hemholtz
free energy’’ F(T, H, N). Such a treatment, is somewhat confusing. Within
the Canonical Ensemble the adequate choice should be T, M (magnetization)
and N. The choice of T, H, and N as independent variables corresponds to
the Isothermal–Isofield ensemble. For such a system the fundamental ther-
modynamic equation reads:

dS=b dU−h dM+n dN, (70)

where h=H/kT. The suitable Massieu–Planck function in our formalism
is the magnetic version of the Planck potential:

Xmag(b, h, N)=S−bU+hM. (71)

The statistical mechanics of this ensemble is obtained from equation:

Xmag=ln QIF, (72)

where

QIF= C
i ¥ WN

e−bEi+hMi. (73)

If we assume now that the magnetic moments do not interact, Ei=
;N

k=1 eki, where ej are the individual energy levels of the magnetic
moments. The partition function can be written as:

QIF=qN, (74)
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where

q=C
j ¥ w

e−bej+hmj (75)

and w is the set of states of an individual magnetic moment. Moreover, if
we assume that the magnetic moments are structureless and practically
static, then only a single energy level is available ej=e0. By choosing the
origin of energies so that e0=0, the partition function can be written as:

QIF=5C
j ¥ w

e+hmj6N. (76)

Consequently, the only variable playing a role in this problem is h=H/kT.
All the thermodynamic quantities will, therefore, scale with H/kT.

Finally, it is interesting to note that in this paramagnetic case U=0
and thus, Xmag=S+hM. Therefore, another suitable choice of Massieu–
Planck function is Lmag(E=0, h, N). In the ferromagnetic case, however,
due to the existence of interactions, Xmag(b, h, N) must be used.

4. GENERAL THEORY OF FLUCTUATIONS

In this section we derive Einstein’s formula for the probability of fluc-
tuations around the equilibrium state to occur. The derivation method, based
on Information Theory, is similar to that proposed recently in ref. 19. Let us
consider a system with a set of microstatesW={i} for which the equilibrium
distribution which maximizes the statistical entropy is {pi(0)}. A virtual
displacement of this system from the initial equilibrium situation can be
understood as the change of an adjustable internal constraint that enables the
distribution {pi(0)} to be modified. Let us characterize such a displacement
by a (multidimensional) continuous parameter o which takes values over a
certain range R. The set of functions {pi(o)} represents the constrained equi-
librium probability distributions given a certain value of o. We define o such
that for the initial equilibrium situation, o=0.

Each of these probability distributions {pi(o)} corresponds to the dis-
tribution with maximum statistical entropy for a given value of o and
satisfies the normalization condition over W.

C
i ¥ W

pi(o)=1. (77)

Now we consider o itself as a random variable which accounts for how
far the system fluctuates from the equilibrium distribution {pi(0)}. Our aim
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is to find the density probability law p(o) for the parameter o. Since
{pi(o)} is the conditional probability for each state i given o, the joint
probability p(i, o) (defined on W×R) satisfies:

p(i, o)=p(o) pi(o) (78)

Following the same strategy as above for the determination of the proba-
bility densities for each statistical ensemble, we apply the Maximum Statis-
tical Entropy Principle in order to determine p(o). The statistical entropy,
associated with the joint probability {p(i, o)}, which must be maximized is:

Ŝ({p(i, o)})=−F
R
do C

i ¥ W
p(i, o) ln p(i, o). (79)

By introducing Eq. (78) into this expression, it can be written in terms of
p(o), which is the adjustable function for the maximization. This gives:

Ŝ(p(o))=−F
R
do C

i ¥ W
p(o) pi(o) ln p(o) pi(o), (80)

and taking into account (77) we obtain:

Ŝ(p(o))=−F do p(o) ln p(o)−F do p(o) C
i ¥ W

pi(o) ln pi(o). (81)

Note that the sum in the second term is the statistical entropy of the dis-
tribution pi(o), which is nothing more than the entropy of the virtually
displaced system. Let us call it S(o). Thus,

Ŝ(p(o))=−F
R
do p(o) ln p(o)−F do p(o)S(o). (82)

The maximization of this expression with respect to the function p(o) must
be performed under the normalization condition:

F
R
do p(o)=1. (83)

We proceed as in Section 3 defining:

L[p(o)]=−F do p(o) ln p(o)−F do p(o)S(o)−l F
R
do p(o). (84)
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From the extremal condition:

dL

dp(o)
=0, (85)

we easily obtain −S(o)− ln p(o)−1−l=0, where l is determined from
the normalization condition (83). The final expression for p(o) is:

p(o)=
eS(o)

>R do eS(o)=
eS(o)−S(0)

>R do eS(o)−S(0) 3 eS(o)−S(0). (86)

This is the well-known Einstein’s formula (20) for the generic fluctuations of
a parameter o. From this expression it is possible to calculate the fluctua-
tions of any intensive yi or extensive Xi thermodynamic variable under
generic conditions, as will be shown in the rest of this section.

In order to proceed further we consider an isolated thermodynamic
system t with N degrees of freedom, with entropy S t(X t

1, X
t
2,..., X

t
N).

The virtual displacement can be imagined as the displacement of an inter-
nal closed wall defining an small (but still macroscopic) subsystem. This
internal wall prevents the mutual equilibrium (mechanical and/or chemical
and/or thermal) between the subsystem and the rest of the system. The
displacement produces a change in the extensive variables of the subsystem
DXk and of the rest of the system DX r

k, which we assume to behave as a
reservoir. Since the global extensive variables do not change:

DXk=−DX r
k, -k=1,...,N. (87)

The total entropy change associated with the virtual displacement is:

DS t=DS+DSr. (88)

For the reservoir we can write:

DS r=C
N

k=1
y r

k DX
r
k=− C

N

k=1
y r

k DXk, (89)

where y r
k are the conjugated intensive variables of the X r

k, which remain con-
stant in the reservoir. Let us now describe the subsystem by choosing a set of
independent variables X1,..., Xn, yn+1,..., yN which are the natural variables
of the Massieu–Planck functionk(X1,..., Xn, yn+1,..., yN), defined as:

k=S− C
N

k=n+1
ykXk. (90)
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Using this equation to calculate DS, substituting into (88) and taking into
account (89), we obtain:

DS t=Dk+D 1 C
N

k=n+1
ykXk
2− C

N

k=1
y r

kXk. (91)

By developing this expression, DS t can be written as:

DS t=Dk− C
n

k=1
y r

k DXk+ C
N

k=n+1
OXkP Dyk+ C

N

k=n+1
DXk Dyk, (92)

where OXkP are the equilibrium values of Xk for the subsystem and reser-
voir in mutual equilibrium, before the virtual displacement. We expand
DS t around the initial equilibrium state in terms of the independent
variables X1,..., Xn, yn+1,..., yN. This yields,

Dk=C
n

k=1

1 “k
“Xk

2
0
DXk+ C

N

k=n+1

1 “k
“yk

2
0
Dyk+

1
2
DFTĴDF+O(D3) (93)

where DF=(DX1,..., DXn, Dyn+1,..., DyN) and Ĵ is the k second derivative
matrix:

Ĵ=R 1
“

2k

“X1“X1

2
0

· · · 1 “
2k

“X1“yN

2
0

x x

1 “2k
“yN“X1

2
0

· · · 1 “
2k

“yN“yN

2
0

S . (94)

where derivatives are evaluated in the state of mutual equilibrium between
the reservoir and the subsystem. This is indicated by the subindex 0. We
must also expand DXk for n+1 < k <N up to the same order:

DXk=C
n

j=1

1“Xk

“Xj

2
0
DXj+ C

N

j=n+1

1“Xk

“yj

2
0
Dyj

=− C
n

j=1

1 “2k
“yk “Xj

2
0
DXj − C

N

j=n+1

1 “2k
“yk “yj

2
0
Dyj. (95)
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Introducing these expansions into Eq. (92) and taking into account the fact
that

1 “k
“Xk

2
0
=yr

k, -k=1,..., n (96)

and that

1 “k
“yk

2
0
=−OXkP, -k=n+1,...,N, (97)

we can express DS t, up to second order in D’s (adequate for small fluctua-
tions around equilibrium), as a quadratic form:

DS t=− 1
2 D
FTĜDF (98)

where the matrix Ĝ is:

Ĝ=R
−1 “

2k

“X1 “X1

2
0

· · · −1 “
2k

“X1 “Xn

2
0

0 · · · 0

x x x x

−1 “
2k

“Xn “X1

2
0

· · · −1 “
2k

“Xn “Xn

2
0

0 · · · 0

0 · · · 0 1 “
2k

“yn+1 “yn+1

2
0

0

x x z

0 · · · 0 0 1 “2k
“yN “yN

2
0

S .
(99)

Therefore, the fluctuations of any set of independent variables are, up
to second order, multigaussian:

p(DF)3 e−1
2 D
F TĜDF. (100)

The covariance matrix of the fluctuations of the independent variables is
the inverse of the matrix Ĝ. For any generic choice of independent
variables, only correlations between extensive variables are expected to
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occur. The evaluation of its variances and covariances requires the inver-
sion of the corresponding submatrix. Since this submatrix is diagonal for
the intensive variables, we can straightforwardly write:

ODyk DylP=dkl 1
“

2k

“y2
k

2−1

0
=dkl 1

“yk

“Xk

2
0
, (n+1 < k, l <N), (101)

where dkl is the Kronecker d-function. Correlations between independent
extensive variables ODXk DXlP (1 < k, l < n) are, in general, different to
zero.

5. FLUCTUATIONS IN THE STATISTICAL ENSEMBLES

To be more specific, let us apply the generic result obtained in the
previous section to the study of fluctuations in the different statistical
ensembles. Such statistical fluctuations are restricted by different con-
straints, as explained in Section 3. Therefore, in each case, and adequate
choice of the set of independent variables will simplify the derivation. Let
us again, for the sake of clarity, choose the example of a simple pure sub-
stance under hydrostatic conditions.

5.1. Microcanonical Ensemble

In this case E, V, and N are fixed. Therefore, we shall evaluate the
fluctuations of (i) b at constant V and N, (ii) p at constant E and N and
(iii) n at constant E and V.

(i) in order to evaluate the microcanonical fluctuations of b, we
must keep V and N constant. Therefore, the appropriate choice of inde-
pendent variables is b, V, and N. The corresponding Massieu–Planck
potential is F [see Eq. (9)]. Therefore we obtain:

ODb2PV, N=1
“

2F

“b2
2−1

V, N
=−1“U

“b
2−1

V, N
(102)

where the subindices explicitly indicate that the fluctuations correspond to
the case of having fixed V and N.

(ii) In this case we choose E, p, and N as independent variables. The
adequate Massieu–Planck potential is L. Therefore:

ODp2PE, N=1
“

2L

“p2
2−1

E, N
=−1“V

“p
2−1

E, N
. (103)
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(iii) Following the same strategy we obtain:

ODn2PE, V=1
“

2C

“n2
2−1

E, V
=−1“N

“n
2−1

E, V
. (104)

Notice that in this ensemble the only fluctuating variables are the intensive
variables and, according to the general result of the previous section, there
will be no correlations between these variables.

5.2. Canonical Ensemble

In the Canonical ensemble b, V, and N are fixed. The fluctuating
variables are E, p, and n. Since only E is an extensive variable, its fluctua-
tions will be uncorrelated with those of p and n. We are therefore, only
interested in the evaluation of the fluctuations of (i) E at constant V and N,
(ii) p at constant b and N, and (iii) n at constant b and V. The results are:

ODE2PV, N=−1“
2S

“E2
2−1

V, N
=−1“U

“b
2
V, N

, (105)

ODp2Pb, N=1
“

2X

“p2
2−1

b, N
=−1 “p

“V
2
b, N

, (106)

ODn2Pb, V=1
“

2Y

“n2
2−1

b, V
=−1 “n

“N
2
b, V

. (107)

It is interesting to note that, from (105) and (102), the microcanonical fluc-
tuations of b and the canonical fluctuations of E (both at constant V and
N) are related through the equation:

ODb2PV, N ODE2PV, N=1. (108)

5.3. Grand Canonical Ensemble

For the Grand Canonical ensemble b, V, and n are fixed. Since, in this
case, we have two fixed intensive variables, correlations between the two
conjugated extensive variables will occur. Therefore, besides the evaluation
of the fluctuations of (i) E at constant V and n, (ii) p at constant b and n,
and (iii) N at constant b and V, (iv) the correlations ODE DNPV must also
be evaluated.
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For the evaluation of the first three fluctuations we obtain:

ODE2PV, n=1
“

2C

“E2
2−1

V, n
=−1“E

“b
2
V, n

, (109)

ODp2Pb, n=1
“

2P

“p2
2−1

b, n
=−1 “p

“V
2
b, n

, (110)

ODN2Pb, V=1
“

2F

“N2
2−1

b, V
=−1“N

“n
2
b, V

. (111)

For the evaluation of the correlations between N and E we choose E, V,
and N as independent variables. The corresponding potential is S. In
general, the off-diagonal terms in Ĝ, are different from zero. However,
since we are interested in the fluctuations with constant volume (DV=0),
the variances and covariances of DE and DN will be given by the inverse of
the sub-matrix ĜEN:

ĜEN=R −1
“

2S

“E2
2
VN

−1 “
2S

“E“N
2
V

−1 “
2S

“E“N
2
V

−1“
2S

“N2
2
VE

S=R −1
“b

“E
2
VN

−1 “b
“N
2
VE

−1 “n
“E
2
VN

−1 “n
“N
2
VE

S . (112)

The inverse matrix can be obtained after some algebra, using equations
similar to (59). The result is:

Ĝ−1
EN=R −1

“E
“b
2
Vn

−1“E
“n
2
bV

−1“N
“b
2
Vn

−1“N
“n
2
Vb

S . (113)

The variances (diagonal terms) are exactly the same as those found above
in Eqs. (109) and (111) and in Section 3 in Eqs. (55) and (56). The off-
diagonal terms correspond to Eq. (57).
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5.4. Other Statistical Ensembles

Let us now consider a generic ensemble with n extensive and N−n
intensive fixed variables. The corresponding Massieu–Planck potential is:

k(X1,..., Xn, yn+1,..., yN)=S− C
N

k=n+1
Xk yk. (114)

The fluctuating variables are (y1,..., yn, Xn+1,..., XN). First, let us evaluate
the fluctuations of the intensive variables ODy2

i P (i [ n). By taking the
Massieu–Planck function:

kŒ(X1,...yi,..., Xn, yn+1,..., yN)=k−yiXi, (115)

we will immediately obtain:

ODy2
i P=1

“
2kŒ

“y2
i

2−1

X1,..., Xi−1, Xi+1,..., Xn, yn+1,..., yN

=−1 “yi

“Xi

2
X1,..., Xi−1, Xi+1,..., Xn, yn+1,..., yN

. (116)

The correlations between any two intensive variables vanish. In other
words, ODyi DyjP=0 (i, j [ n). To show this it is sufficient to consider the
Massieu–Planck function kœ=k−yiXi −yjXj, and realize that all the off-
diagonal terms in the Ĝ matrix corresponding to intensive variables will be
zero. For the computation of the fluctuations of the extensive variables
ODX2

i P (i > n), we perform a Legendre inverse transform of k into kŒ:

kŒ=(X1,..., Xn, yn+1,..., Xi,..., yN)=k+yiXi, (117)

and obtain:

ODX2
i P=−1“

2kŒ

“X2
i

2−1

X1,..., Xn, yn+1,...yi−1, yi+1,..., yN

=−1“Xi

“yi

2
X1,..., Xn, yn+1,..., yi−1, yi+1,..., yN

. (118)

The comparison of this result with Eq. (116) enables us to generalize the
Eq. (108) relating the fluctuations of an extensive variable with the fluc-
tuations of the corresponding intensive variable. The general result is:

ODX2
i PODy

2
i P=1, (119)
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where both averages correspond to keeping all the variables except Xi or yi

constant. This expression means that it is not possible to prevent both an
extensive variable and the corresponding conjugated intensive variable to
fluctuate simultaneously. (21)

We can also evaluate the correlations ODXi DXjP (i, j > n). Taking the
Massieu–Planck potential

kœ=k+yiXi+yjXj (120)

one finds:

Ĝ−1
XiXj

=R −1
“Xi

“yi

2
· · · yj · · ·

−1“Xi

“yj

2
· · · yi · · ·

−1“Xj

“yi

2
· · · yj · · ·

−1“Xj

“yj

2
· · · yi · · ·

S (121)

which is symmetrical. It is also easy to check that the correlations between
extensive and intensive variables are null. By using the method presented so
far, for this generalized ensemble, one may also compute correlations of
more than two variables: ODXi DXj DXkP. Relations similar to those given
in Eqs. (119) can also be found between such higher order fluctuations.
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